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Critical dynamics in Heisenberg ferromagnets and 
antiferromagnets near the percolation threshold 

I R Pimentel and  R B Stinchcombe 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 
3NP,  UK 

Received 24 February 1989 

Abstract. The critical spin-wave dynamics of dilute ferromagnetic and antiferromagnetic 
Heisenberg systems near the percolation threshold is studied on  a two-dimensional regular 
(fractal) model for bond percolation, which captures the relevant geometric features of 
the cluster structure. The dynamic critical exponent and spectral dimension for both the 
ferromagnetic and antiferromagnetic systems are calculated. The treatment of the dynamics 
in these systems requires the use of generalised scaling techniques for sublattice systems, 
which involve an extension of the parameter space. Giving an interpretation to the extended 
parameter space for the systems considered and exploiting the multiparameter scaling in 
the equations of motion, we present an explicit derivation of a relation between the dynamic 
exponent and static exponents, namely the bond conductance exponent and the fractal 
dimension of the percolating network, for ferromagnetic systems. This provides a new 
method of relating the dynamic and static exponents via dynamic scaling alone, in contrast 
to previous forms based on crossover arguments and the use of relationships between 
physical quantities. 

1. Introduction 

This paper is concerned with the critical spin dynamics of dilute ferromagnetic and  
antiferromagnetic Heisenberg systems near the percolation threshold. Although static 
dilution-induced critical phenomena have long been studied (for a review see Stinch- 
combe (1983a)), much less is known about critical dynamics in dilute systems (Harris 
and Kirkpatrick 1977, Korenblit and Shender 1978, Stinchcombe 1985). 

Dilution induces criticality in spin systems at zero temperature for concentrations 
p in the neighbourhood of the percolation threshold p c ,  where the percolative correla- 
tion length 6 diverges. For diverging 6, holes on all length scales appear on the infinite 
cluster, which becomes scale invariant. The length scaling of the mass of the cluster 
is then characterised by a fractal dimension d f ,  such that M ( L )  - Ldl, where d,< d 
and d is the embedding Euclidean dimension. Dynamical processes become critical 
on such a self-similar structure. In particular, the dynamics of (long wavelength) spin 
waves is then described by an  anomalous power-law dependence of frequency w on 
‘wavevector’, o r  inverse characteristic length k characterised by a dynamic exponent 
z. In fact, the divergence in 6 induces a crossover in the dynamics of spin waves on 
the percolating network, from hydrodynamic behaviour for k6 < 1 to critical behaviour 
for k [ >  1. In the case of dilute Heisenberg ferromagnets the dispersion relation for 
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spin-wave excitations in the hydrodynamic regime ( k ( >  1) is given by o = D ( p ) k 2 ,  
where the spin-wave stiffness D ( p )  depends on the concentration p ,  while in the critical 
regime ( k ( >  1)  it takes the form oxk’. It has been shown (Brenig et a1 1971, 
Kirkpatrick 1973) that D( p )  is directly related to static properties of the percolating 
cluster, namely the percolative conductivity and the percolation probability. Assuming 
that the crossover between the two asymptotic regimes develops continuously in the 
crossover region, k ( -  1, leads to a scaling law which relates z to static percolative 
exponents (Harris and Stinchcombe 1983). The behaviour of dilute Heisenberg antifer- 
romagnets can be similarly discussed using appropriate forms for the spin-wave 
dispersion in those systems (Harris and Kirkpatrick 1977, Christou and  Stinchcombe 
1988). 

Much attention has been given to the study of the geometrical properties of dilute 
systems near p c ,  which is crucial for fully understanding the physical properties of 
these systems (for reviews on percolation see Stauffer 1979, Essam 1980). Various 
geometrical models have been proposed to imitate the infinite incipient cluster at the 
percolation threshold, and  it is of great interest to understand the effects of these 
different geometries on the magnetic properties. In  particular, for the backbone of the 
infinite cluster which results from eliminating the dangling ends (and is the relevant 
object for the discussion of, for example, propagation of correlations and flow of 
current) three different pictures have been presented, namely the ‘nodes and links’ 
picture (Skal and Shklovskii 1975, de  Gennes 1976), the ‘nodes, links and blobs’ picture 
(Stanley 1977), and the Sierpinski gasket model (Gefen et a1 1981). The ‘nodes, links 
and blobs’ picture is currently accepted as the most realistic (Coniglio 1982). 

Recently there has been considerable interest in regular fractal models for percolat- 
ing clusters at criticality, the main reason being that the exact solution of these models 
gives insight into the physical properties of the real (random) systems. Mandelbrot 
(1984) and  Mandelbrot and  Given (1984) have presented fractal models for the infinite 
cluster at the percolation threshold, which capture the essential geometric features. 
However, these models d o  not describe the approach towards the threshold. For above 
the percolation threshold it is believed that on length scales smaller than the percolative 
correlation length, the backbone of the infinite cluster is self-similar, consisting of 
‘nodes’ joined by singly connected ‘links’ and multiply connected ‘blobs’, but on larger 
length scales it becomes homogenous. Nagatani (1985) has proposed a regular model 
in two dimensions for bond percolation just above the threshold, which incorporates 
all the previously mentioned features for the infinite cluster and, furthermore, gives 
the distribution of finite clusters, allowing the derivation of explicit expressions for 
the quantities characterising the approach towards the threshold. In this paper we will 
study the critical spin-wave dynamics of Heisenberg systems in this regular model. 
The model, in addition, has the advantage of providing a picture for the full cluster 
and not only for the backbone (unlike other models) which is important for the 
treatment of the dynamics in which the dangling ends are relevant. The values for the 
critical bond concentration, the fractal dimensionality of the infinite cluster and of its 
backbone, the correlation length and the conductivity exponents, and also the scaling 
form of the cluster distribution, obtained for the model, are in very good agreement 
with those of random percolation (Nagatani 1985). The model is thus expected to 
provide an adequate basis for the study of the dynamics. 

The dynamics of randomly diluted spin systems near p c  has been considered by 
Stinchcombe (1983b) and Harris and Stinchcombe (1983) who applied real space 
renormalisation group methods respectively to the dynamics of a dilute ferromagnetic 
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chain and  of a two-dimensional hexagonal lattice ferromagnet. This required, however, 
the use of averaging methods to deal with the random equations of motion, leading 
to approximate recursion equations for the scaling parameters, namely the frequency 
and  the concentration, In turn, non-random fractal models can be solved exactly by 
the real space methods since these methods involve a decimation process which is the 
inverse of that used in the construction of the fractals, namely recursive insertions of 
a structure on a smaller scale. Harris and  Stinchcombe (1983) have calculated the 
dynamics of a Heisenberg ferromagnet on a regular fractal model, the Sierpinski gasket. 
The treatment of the dynamics of fractals with sublattices, of which the Nagatani 
model is a n  example, does, however, require the use of generalised scaling techniques 
(Stinchcombe and Maggs 1986) involving an  extension of the scaling parameter space. 
An interpretation will be given to the extended parameter space of the Heisenberg 
systems studied here, which we will exploit to explicitly derive a relationship between 
the dynamic exponent and  static exponents, namely the bond conductance exponent 
and  the fractal dimension, for ferromagnetic systems. As mentioned before, a scaling 
law relating the dynamic exponent to static percolative exponents for dilute ferromag- 
nets has been obtained (Harris and Stinchcombe 1983) by combining dynamic crossover 
arguments with the use of a relationship between physical quantities. In contrast, our 
derivation shows that it is possible to relate the dynamic and static exponents in a n  
explicit form by dynamic scaling alone. 

This paper is organised as follows. In § 2 we calculate the critical spin-wave 
dynamics of Heisenberg ferromagnets and  antiferromagnets in the regular model for 
bond percolation discussed, applying scaling techniques for sublattice systems. In 0 3 
we present a derivation of a relationship between the dynamic exponent and static 
exponents for ferromagnets, based on an interpretation of the extended parameter 
space arising in the dynamic scaling of the sublattice systems. Finally, in § 4 we 
summarise the results in this paper. 

2. Critical spin-wave dynamics in dilute ferromagnetic and antiferromagnetic 
Heisenberg systems 

We now study the dynamics of ferromagnetic and antiferromagnetic Heisenberg systems 
on the two-dimensional regular model for bond percolation proposed by Nagatani. 
Figure 1 illustrates the fractal structure of the model, from which the critical dynamics 
arises. This structure can be obtained by recursively replacing each bond by the same 
generator of the Mandelbrot-Koch curve (Mandelbrot and Given 1984) and has a 
fractal dimension d f =  In 8/ln 3. 

The Hamiltonian describing Heisenberg spin systems is 

where the exchange couplings J,,  between the spins S, are positive in the case of 
ferromagnets, J,, > 0, and  negative in the case of antiferromagnets, J,, < 0. We consider 
nearest-neighbour couplings only and assume that the spins are normalised to unity. 
A scaling method is used to calculate the dynamic critical exponents for the systems 
considered, which is based on the transformation of the equations of motion under a 
length scaling achieved by elimination of sites (decimation). 
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-- 
Figure 1. Fractal lattice in h'agatani's model for bond percolation. 

( i )  Ferromagnet. The linearised equations of motion governing the transverse spin 
dynamics of a Heisenberg ferromagnet at zero temperature can be written in the form 

where S: is the usual combination S: = S,'+ is: of the transverse spin components at 
site i, w is the frequency divided by coupling constant J ,  and the sum is over the n, 
nearest neighbours of i. The Goldstone symmetry in the problem is restored by imposing 
the condition U = 1. Now, it should be noted that in the fractal lattice considered here, 
there are three types of sites according to the number of nearest neighbours n,, n, = 1, 
2,  3. Because of this multiplicity of non-equivalent sites on the lattice, the original 
form of the equations (2), where U = 1, is not maintained under scaling and hence 
needs generalisation. It turns out that the parameters U and w are both sufficient and  
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necessary to perform an  exact scaling, having the initial conditions U =  1 with w 
arbitrary; an  extension of the parameter space from one parameter ( w )  to two (0, U )  
is thus required. 

Eliminating sites on the original lattice as illustrated in figure 2, for a lattice rescaling 
by a scale factor b = 3, leads to the following scaling transformations for the parameters 
w and U :  

wa U (  a - b )  + wb 
= U ' = -  

( 2u -w) ' (u -o ) '  (2u - w ) ? (  U - w ) 2  
(3) 

-[(2U - w ) ( u  - w ) + ( 4 u  -@)(U - w )  - 112 

b = [ ( 4 ~  - w ) ( u  - U ) -  1 ] [ ( 2 ~  - U ) ' -  11 - (2u  - w ) ( u  - U ) .  

The linearised form of these equations at the fixed point (U* ,  U * )  = (0, 1) has eigen- 
values A = y ,  22 with associated scaling fields given by (to first order in the variables 
w and 6 = ( U  - U*))@, w -:a, respectively. The larger of the eigenvalues determines 
the low-frequency scaling of w since the initial symmetry conditions ( U  = 1, w arbitrary) 
d o  not cause the vanishing of the associated scaling field which remains linear 
in w. This yields for the dynamic critical exponent of the ferromagnetic system the 
value 

zF=In22 / ln3=2 .81 .  (4) 

As shown by Rammal and Toulouse (1983) the spectral dimension d ,  characterising 
the scaling of the low-frequency density of spin-wave states in the infinite cluster can 
be related to the dynamic critical exponent z and the fractal dimension d f  by d ,  = z/df .  
So (4) implies for the spectral dimension of the ferromagnetic infinite cluster the value 
d S = I n 8 / l n  2220 .67 .  This is in good agreement with the result found by Lewis and 
Stinchcombe (1984) in a direct numerical computation of the density of states of a 
two-dimensional randomly diluted system at the percolation threshld, and with the 
(approximate) conjecture of Alexander and Orbach ( d ,  = f )  (Alexander and Orbach 
1982). 

(ii) Antiferromagnet. For an antiferromagnet on such a fractal lattice there are 
again three types of sites according to the number of nearest neighbours, but now each 
of these sites can be occupied either by a spin up or a spin down. This implies that 

Figure 2. Scaling of a bond in a ferromagnetic fractal 
lattice. 

Figure 3. Scaling of a bond in an  antiferromagnetic 
fractal lattice (0 spin up, x spin down) .  
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the exact scaling of the antiferromagnet requires a generalisation of the equations of 
motion involving three parameters, which are now written in the form 

", 

/ = I  
(-n,u - w)S:  = 1 Sy 

if at site i there is a spin up  and 

"4 

/ = I  
( - n , U + w ) s : =  1 s; 

( 5 )  

if at site i there is a spin down. The initial conditions for the scaling are now u = U = 1 
with w arbitrary. 

Eliminating sites on the antiferromagnetic lattice as shown in figure 3, for a lattice 
rescaling by a scale factor b = 3, gives the following recursion relations for the para- 
meters w, #, U: 

w ' =  # I =  
wa U (  a - b )  - wb 

( 2 u  + w ) ( 2 v  - w ) ( u  + W ) ( U  - w )  ( 2 u + w ) ( 2 u - o ) ( u + w ) ( v - w )  

u ( a  - c )  + wc 
U' = 

( 2 u  + w ) ( 2 u - w ) ( u + w ) ( v  -0) 

with 

a = [ ( 2 u + w ) ( 2 u - w ) - 1 ] [ ( 4 u + w ) ( ~ - w ) - 1 ] [ ( 4 ~ - w ) ( u + w ) - l ]  

- ( 2 ~  + W ) ( U  - w ) [ ( ~ u  - U ) ( #  + U )  - 11 

- (20 - U ) ( #  + w ) [ ( ~ u  + @ ) ( U  - U )  - 1 3  - ( 2 u  + w ) ( ~ u  - W ) ( U  + W ) ( U  - W )  

b = [ ( 2 ~  + w ) ( ~ u  - O )  - 1 ] [ ( 4 ~  + W ) ( U  - W )  - 11 - ( 2 ~  + W ) ( U  - W )  

~ = [ ( 2 ~ + w ) ( 2 ~ - - w ) - 1 ] [ ( 4 ~ - w ) ( u + w ) -  ~ ] - ( ~ u - o ) ( u + w ) .  

The eigenvalues of these equations linearised at the fixed point ( w " ,  U*, U * )  = (0 ,  1 ,  1) 
are A = 1, y ,  22. The associafed linear scaling fields (to first order in the variables w ,  
6 = ( U  - U " ) ,  77 = ( U  - U")) are respectively w - i( S - v), w, 6 + 77. Due to the symmetry 
6 = 77 = 0 present in the original system of equations, the scaling field associated with 
the largest eigenvalue vanishes in linear order, so higher-order approximations to the 
scaling fields are needed to extract the dynamic exponent z. A calculation to second 
order shows that the scaling field 6 + 77 +$ST -A(  6w - q w )  44 77 * + 6')  - S w 2  associ- 
ated with the eigenvalue A = 2 2  is initially of order U'. It follows then that the 
antiferromagnetic dynamic critical exponent is given by 

ZA =$In 2 2 / l n  3 1.41. ( 7 )  

Introducing this result in the Rammal-Toulouse relation gives for the spectral 
dimension of the antiferromagnetic infinite cluster the value d, = 2 In 8/ln 22 = 1.35. 

It turns out that the results (4) and (7) for the ferromagnetic and antiferromagnetic 
dynamic exponents of this particular fractal satisfy the same relationship zAF = ;z, as 
observed in pure or simple systems (see also Stinchcombe and Maggs 1986). This 
relationship is not expected to apply in random cases (see Maggs and Stinchcombe 
1986). 
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3. Derivation of a relation between the dynamic and static exponents by a scaling 
approach 

The scaling of systems with sublattices usually requires an extension of the parameter 
space appearing in the equations of motion, as observed in the previous section. An 
interpretation of the extended parameter space arising for the case of the magnetic 
systems considered is here given which provides insight into the scaling process. I t  
will be shown that from the multiparameter scaling in the equations of motion it is 
possible to obtain both dynamic and static exponents. Based on this, we will derive 
a scaling relation between the dynamic and static exponents for ferromagnetic systems. 

If in the equations of motion for the ferromagnet ( 2 )  one writes U = 1 + h / J ,  these 
will be 

where w is now simply frequency. It turns out then that (8) is formally identical to 
the equations of motion for a ferromagnet in a longitudinal site-dependent magnetic 
field h, such that h, = n,h at site i. In a similar way for the antiferromagnet, if one 
writes U = 1 + h*/J in ( 5 )  and U = 1 - h‘/J in ( 6 )  the equations obtained are formally 
identical to those of an antiferromagnet in a longitudinal magnetic field with magnitude 
h*, = - n , 6  or h’, = n,L according to whether the spin at site i is up or down. The initial 
conditions for scaling are then for the ferromagnet h, = 0 and for the antiferromagnet 
h*, = 6, = 0. Thus one can interpret the extension of the parameter space for both the 
ferromagnet and the antiferromagnet as follows. Under decimation systems originally 
in zero magnetic field scale into systems with effective applied fields produced by the 
decimated spins. The magnitudes of the fields on each site are proportional to the 
coordination number of the sites, since such fields result from equal contributions 
from each of the neighbouring decimated bonds. For the antiferromagnet one naturally 
expects the field acting on the up spins to be of opposite sign to that acting on the 
down spins. 

Given this interpretation of the extended parameter space in terms of effective 
magnetic fields, it turns out that the scaling field associated with the eigenvalue that 
determines the dynamic exponent for the ferromagnet considered in Pi 2 is of the form 
(in linear order) ( w  - K ) / J  where E =  Ah is the average of the fields on the different 
types of sites on the lattice and A is the average coordination number. Since h is an 
effective field arising from the removal of bonds, one expects that at w = 0 it scales in 
the inverse way to the number of bonds, i.e. that h’= bdlh. Also, one observes that at 
w = 0 and h = 0 equation (8) becomes formally equivalent to Kirchoff’s law for a 
network of conductances (+ = J (connecting potentials VI = ST), and hence under such 
conditions ( w  = 0, h = 0 )  the scaling of the coupling J becomes identical to the scaling 
of the bond conductance, i.e. J ‘ =  b-‘l”J where ? is the conductance exponent and U 
the correlation length exponent. So, in principle it should be possible to relate the 
dynamic critical exponent which characterises the scaling of the field ( w  - 6)/J to the 
static exponents characterising the scaling of the parameters h and J involved in the 
field, namely the fractal dimension d,. and the conductance and correlation length 
exponents, ? and U respectively. 

The scaling of the coupling J and the field h can be obtained from the transformation 
of (8) under decimation, fixing w to be the same in the original and scaled systems. 
For simplicity we consider here the scaling of the backbone of the infinite cluster which 
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involves only two types of sites with two and three nearest neighbours. The resulting 
scaling transformations for the parameters h and J at fixed w are 

( 2 J + 2 h  - w)’ 
( 2 J + 2 h  - ~ ) ’ ( 3 J + 3 h  - w)’ - J 2 ( 5 J  + 5h - 2 ~ ) ’  

J ’ =  J 3  

( 2 3  + 2h - w)’(3J + 3h - W )  - J’ (5J  + 5h - 2 ~ )  
(23 + 2 h  - ~ ) ’ ( 3 J + 3 h  - w ) ’ - J 2 ( 5 J  + 5 h  - 2 ~ ) ’  

h‘= h + J - J’ 

The linearised form of these equations at the fixed point ( I ” ,  h * )  = (0,O) and w = 0, 
is given by 

J ’ = f j J  - (2881 11’)h + ( 1  16/ 1 1’) w (9a)  

h ’ = 6 h - 2 ~ .  ( 9 b )  
From ( 9 a )  it turns out that indeed at w = 0 and h = 0 the scaling of the coupling is 
given by the same eigenvalue as the scaling of the bond conductance which for this 
particular lattice is b-“” = A .  Also, from ( 9 6 )  it follows that at w = 0 the eigenvalue 
characterising the scaling of the field is the inverse of that for the number of bonds, 
which in the case of the backbone is bdl = 6 .  

Now, in linear order and  at fixed w, the scaling field associated with the eigenvalue, 
which determines the ferromagnetic dynamic exponent for the backbone, scales like 

Then introducing ( 9 a )  and ( 9 b )  into ( l o ) ,  one finds that z is related to t*/v and df by 
the form 

z =  ? / v + d , .  ( 1 1 )  
This relationship leads to the form of the scaling law relating z to the static exponents 

for the conductivity and  the percolation probability of dilute ferromagnets derived by 
Harris and Stinchcombe (1983)  ( z  = 2 + ( t  - @)I v)), by using the relation between the 
percolation probability exponent and the fractal dimension ( p  = d - d,) and relating 
the conductivity ( t )  and conductance ( t*) exponents ( (  t - ?) = ( d  - 2 )  v). 

4. Conclusions 

A regular fractal model for bond percolation in two dimensions was used to investigate 
the critical spin-wave dynamics of dilute ferromagnetic and antiferromagnetic Heisen- 
berg systems near the percolation threshold. Although missing disorder aspects, and 
also exhibiting a discrete scale invariance while the real random fractals are statistically 
scale invariant, the model captures the relevant geometric features of the cluster 
structure near the threshold. The dynamic critical exponent and the spectral dimension 
for the ferromagnetic and  the antiferromagnetic systems were calculated. The treatment 
of the dynamics in these systems required the use of generalised scaling techniques 
for sublattice systems which involve an extension of the parameter space. Giving an  
interpretation to the extended parameter space and exploiting the multiparameter 
scaling in the equations of motion, we presented an explicit derivation of a relation 
between the dynamic critical exponent and static exponents, namely the conductance 
exponent and  the fractal dimension, for ferromagnetic systems. This provides an  
alternative method of relating dynamic to static exponents via dynamic scaling alone. 
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